

ESC 2012 Moscow

Exposure and Vulnerability Estimation from satellite and ground-based remote sensing

for seismic risk assessment in Bishkek, Kyrgyzstan

Massimiliano Pittore, M. Wieland, S. Parolai, J. Zschau GFZ Potsdam, Section 2.1 Earthquake Risk and Early Warning GFZ Potsdam, Centre for Early Warning

Instrumental Chambe and Southadnability

Introduction

Motivation

ID

1

2

3

Building floor

Three- floor building

Nine-floor building with

Five-floor building with a

with a ground floor

a ground floor

ground floor

spatially fragmented

overlappings

overlappings

The constructive decision

Building with bearing brick walls

and ferro-concrete overlappings

Ferro-concrete frame with brick

filling of walls and ferro-concrete

Ferro-concrete frame with brick

filling of walls and ferro-concrete

built up ages

measured ax² i b

200

180

160 ੱਛ

140

120

highly aggregated

M. Pittore - ESC 2012 Moscow - August 23rd

EMS-98

в

D

С

Motivation

built up ages

M. Pittore - ESC 2012 Moscow - August 23rd

Overview of the approach

remote

Coupling remote sensing with in-situ imaging RVS can be optimized over broad areas.

Multi-scale Exposure Estimation

Workflow / Results

Analysis of medium-resolution satellite images

Stage of Stratification

Pixels

 $Pixels \rightarrow Segments \rightarrow Thematic classes \rightarrow Urban Structure Types$

Next: sampling!

Meters

Analysis of medium-resolution satellite images

Stage of Stratification

Urban Structure Types

Product	Overall Accuracy	Cohen's Kappa
MR built-up mask (1977)	88.33%	0.66
MR built-up mask (1994)	87.67%	0.67
MR built-up mask (2009)	90.00%	0.78
MR LULC (2009)	81.00%	0.79

1 2 3 4 Kilometers

> Urban Structure Type: 16 Type: industrial, commercial Age: built before 1977

Urban Structure Type: 8 Type: 1-2 storey masonry, brick Age: built between 1994 and 2009

125 250 375 500

Urban Structure Type: 10

Age: built before 1977

Type: 3-6 storey brick, concrete, panel

M. Pittore - ESC 2012 Moscow - August 23rd

Next: sampling!

8

Meters

Acquisition and analysis of high-resolution omnidirectional images

GFZ Mobile Mapping System

Image capturing and storing unit

- > Omnidirectional camera
- > GPS receiver and antenna
- Digital compass with accelerometric sensors
- Customized PC
- Mounting system with sucking cups

Omnidirectional camera

Navigation unit

- Laptop with QGIS, streetmaps, precalculated sample areas and routes
- > GPS receiver and antenna
- Real-time GPS-tracking

Navigation unit

System mounted on car

Acquisition and analysis of high-resolution omnidirectional images

- Fast, unbiased, dense collection of visual content
- No need for skilled operators, just drive it.
- Intuitive and efficient visual interpretation, e.g. by engineers.

Omnidirectional image In equirectangular projection

Acquisition and analysis of high-resolution omnidirectional images

Example: Automated height measurement from 3D Dense reconstruction

Analysis of high-resolution satellite images

Automated building footprint extraction

Building location, footprint area, roof-color/-material, disaggregation of census data, etc.

Data integration and vulnerability estimation

- Priors from medium-resolution satellite images:
 - Estimated building age
 - > Landuse / Landcover
- Information from high-resolution satellite images:
 - Buildings footprint, location
 - ≻ ...
- Information from omnidirectional images:
 - Buildings height

≻ ...

- > **Priors and information from manual data entry:**
 - Expert knowledge
 - Ancillary data (e.g. already existing building inventory data)

Data integration and vulnerability estimation

Bayesian networks

Evidences:

LULC: residential - panel, concrete,frame Age: 1994-2009 Height: 29 m

type	$\mathbf{P}(\Lambda)$	P(B)	P(C)	P(D)	$\mathbf{P}(\mathbf{E})$	P(F)
0	0.9334	0.04757	0.01903	0	0	0
1	0.175	0.56706	0.19842	0.01984	0.01984	0.01984
2	0.175	0.56706	0.19842	0.01984	0.01984	0.01984
3	0.175	0.56706	0.19842	0.01984	0.01984	0.01984
4	0.0181	0.215	0.427	0.2964	0.0435	0
5	0.0181	0.215	0.427	0.2964	0.0435	0
6	0	0.0303	0.06061	0.22	0.43911	0.24998
7	0	0.0303	0.06061	0.22	0.43911	0.24998

conditional probability table (V)

EMS-98 Vulnerability Scale

Data integration and vulnerability estimation

Bayesian networks

Evidences:

LULC: residential - panel, concrete,frame Age: 1994-2009 Height: 29 m

Posteriors:

No. of storeys: 9 WHE Type: 6 Vulnerability (EMS-98): E

type	$\mathbf{P}(\Lambda)$	P(B)	P(C)	P(D)	$\mathbf{P}(\mathbf{E})$	P(F)
0	0.9334	0.04757	0.01903	0	0	0
1	0.175	0.56706	0.19842	0.01984	0.01984	0.01984
2	0.175	0.56706	0.19842	0.01984	0.01984	0.01984
3	0.175	0.56706	0.19842	0.01984	0.01984	0.01984
4	0.0181	0.215	0.427	0.2964	0.0435	0
5	0.0181	0.215	0.427	0.2964	0.0435	0
6	0	0.0303	0.06061	0.22	0.43911	0.24998
7	0	0.0303	0.06061	0.22	0.43911	0.24998

conditional probability table (V)

EMS-98 Vulnerability Scale

Preliminary results: inventory composition

 ioniniane sunanig type	
1-2 storey masonry, brick - type 1	3-6 storey i
1-2 storey masonry, brick - type 2	7-9 storey (

-6 storey masonry, brick, concrete, panel buildings

7-9 storey concrete panel, frame + monolithic

industrial, commercia mixed built-up

Preliminary results: spatial disaggregation of total population

Building type	Est. nr. of buildings	Est. population
1-2 storey masonry, brick individual house, type 1,2,3	86842	292207
3-6 storey brick, concrete, panel multi-family block	8469	288030
7-9 storey concrete, panel, frame, monolithic block	2271	107936
1-2 storey brick, concrete industrial, commercial	5583	-
1-9 storey mixed built-up	9128	159466
TOTAL	112293	847639

 Population density (population/km²)
 5000 - 7500
 >25000

 <2500</td>
 7500 - 15000
 2500 - 5000
 15000 - 25000

Preliminary results: multi-temporal change detection

Age of structure	Est. nr. of buildings	Est. population
Built before 1977	77292	579595
Built between 1977 and 1994	16205	115976
Built between 1991 and 2009	18796	152068
TOTAL	112293	847639

Age of structures built before 1977

built between 1977 and 1994 built between 1994 and 2009

Preliminary results: spatial (probabilistic) distribution of vulnerability

Mean Vulnerability Index (MVI)	Est. nr. of buildings	Est. population
0.45-0.50	25582	99969
0.50-0.55	15722	266175
0.55-0.60	34377	227410
0.60-065	24322	140810
0.65-0.70	6606	110130
0.70-0.75	4177	0
0.75-0.80	1507	3145
TOTAL	112293	847639

$$MVI = \frac{1}{(n-1)} \left(\sum_{i=0...n-1} p(V_i)(n-i) - 1 \right)$$

Preliminary results: software implementation

Feature extraction plugin for QGIS

- Single segmentation
- Multi-scale segmentation
- Texture descriptors
- Shape descriptors
- ML classification

Custom code

- C++, Python
- Libraries (GDAL/OGR)

PostGIS, QGIS, GRASS

- > geo-data management
- > adv. (vector-) analysis
- visualisation

M. Pittore - ESC 2012 Moscow - August 23rd

>

Conclusions and Discussion

- Analysis of medium-resolution satellite images allows to:
 - Extract vulnerability relevant features on neighbourhood scale.
 - Focus the spatial extent for local analysis using stratified sampling.

> Omnidirectional imaging:

- > proved to be fast deployed, easily operated,
- shows great potential for automated/manual inventory asssment.
- > Data integration based on Bayesian networks allows to:
 - > apply a fully probabilistic scheme in a simple, intuitive way,
 - > merge heterogeneous sources of information,
 - include (local) knowledge accounting for uncertainties.
- Future activities include:
 - Comprehensive cross-validation of results with ground-truth data.
 - Extending and improving automated feature extraction.
 - Expert-system for remote rapid visual screening (RRVS).
 - Probabilistic Risk assessments for main urban areas in Central Asia.

Thank you for your attention!

Publications

M. Pittore, M. Wieland, "Towards a rapid probabilistic seismic vulnerability assessment using satellite and ground-based remote sensing", *Natural Hazards*, accepted for publication.

M. Wieland, M. Pittore, S. Parolai, J. Zschau, "Exposure estimation from multi-resolution optical satellite imagery for seismic risk assessment", *ISPRS International Journal of Geo-information*, 1 (2012) 69-88.

M. Wieland, M. Pittore, S. Parolai, J. Zschau, B. Moldobekov, U. Begaliev, "Estimating building inventory for rapid seismic vulnerability assessment: towards an integrated approach based on multi-source imaging", *Soil Dynamics and Earthquake Engineering*, 36 (2012) 70-83.

M. Pittore, D. Bindi, S. Tyagunov, M. Wieland, M. Picozzi, M. Pilz, S. Ullah, K. Fleming, S. Parolai, J. Zschau, B. Moldobekov, K. Abdrakhmatov, U. Begaliev, P. Yasunov, A. Ishuk, N. Mikhailova, "Seismic hazard and risk in Central Asia", *Scientific Technical Report,* STR 11/14 (2012), DOI: 10.2312/GFZ.b103-11149.

P. Felzenzwalb, D. Huttenlocher, "Efficient graph-based image segmentation", *Int. J. Comput. Vis.*, 59 (2004), 67–81.